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We use a simple model of associating fluids which consists of spherical particles having a hard-core repul-
sion, complemented by three short-ranged attractive sites on the surface �sticky spots�. Two of the spots are of
type A and one is of type B; the bonding interactions between each pair of spots have strengths �AA, �BB, and
�AB. The theory is applied over the whole range of bonding strengths and the results are interpreted in terms of
the equilibrium cluster structures of the phases. In addition to our numerical results, we derive asymptotic
expansions for the free energy in the limits for which there is no liquid-vapor critical point: linear chains
��AA�0, �AB=�BB=0�, hyperbranched polymers ��AB�0, �AA=�BB=0�, and dimers ��BB�0, �AA=�AB=0�.
These expansions also allow us to calculate the structure of the critical fluid by perturbing around the above
limits, yielding three different types of condensation: of linear chains �AA clusters connected by a few AB or
BB bonds�; of hyperbranched polymers �AB clusters connected by AA bonds�; or of dimers �BB clusters
connected by AA bonds�. Interestingly, there is no critical point when �AA vanishes despite the fact that AA
bonds alone cannot drive condensation.
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I. INTRODUCTION

The condensation of simple fluids is driven by the free-
energy balance between the high-entropy gas and the low-
energy liquid phases. This transition is generic in simple flu-
ids interacting via isotropic intermolecular potentials that
comprise a short-ranged repulsion and a longer-ranged at-
traction. Somewhat surprisingly, numerical simulations of di-
polar hard sphere �DHS� �1� and also of Stockmayer fluids
�2� have shown that the anisotropy of the dipolar potential
promotes the formation of self-assembled aggregates �chains,
rings and more complex clusters� if the dipolar interaction
strength is of the order of the thermal energy. This is in sharp
contrast with the isotropic compact clusters observed in
simple fluids. Simulation results also suggest that when this
dipolar clustering is significant the system fails to condense.
It is unclear whether strong association precludes any kind of
fluid-fluid phase separation as failure to observe it may be an
artifact of the simulation techniques. The situation remains
controversial �3–6�, requiring the development of new simu-
lation methods �7� to review the dipolar and related conden-
sation problems in the light of recent theoretical results.
There is also an urgent need to develop analytical treatments
of strongly anisotropic correlated systems. Association theo-
ries for dipolar fluids �8–12� that include the effect of linear
cluster formation in the thermodynamics, reproduce well the
slow variation in the internal energy with the density and
cluster size �or mass� distribution. The simplest of these ap-
proaches assumes that the only effect of the bonding interac-
tion is to drive cluster formation and hence describes the
fluid as an ideal mixture of self-assembling clusters, failing
to predict the existence of phase transitions unless direct or
indirect interactions between the clusters are added.

More recently a very active line of work that also ad-
dresses the interplay between self-assembly and condensa-
tion concerns the novel type of soft matter known as associ-

ating colloids. Unlike in atomic systems, we are now able to
control the interactions between colloidal particles, thus
opening up the possibility of new structural and thermody-
namic behavior �13�. Of particular interest are the so-called
patchy colloids, the surfaces of which are patterned so that
they attract each other via discrete “sticky spots” of tunable
number, size, and strength. Besides their relevance to appli-
cations or in biological systems �e.g., protein solutions�,
patchy colloids have important connections with notoriously
difficult classical liquids such as water and the strongly di-
polar fluids described above �14�. An understanding of these
novel systems will therefore shed light on more traditional
forms of liquid matter. In fact, the interplay between cluster
formation and condensation is a general problem, relevant in
a variety of other theoretical contexts.

Arguably the most successful thermodynamic perturba-
tion theory for associating fluids was developed by Wertheim
�15,16� more than two decades ago. Originally the theory
considered fluids of associating hard spheres �15–18� but
later it was realized that in the limit of infinite associating
strength, a polydisperse mixture of polymers was recovered
�19�. Chapman and co-workers extended the theory to mono-
disperse polymers �20� and realized that it was applicable to
polymers with attractive monomers �21,22�. Since then, the
theory has achieved enormous success and has been used to
describe the equation of state of idealized polymers as it is
computationally convenient and does not require any empiri-
cal parameters. Furthermore, it yields results that are of simi-
lar or superior quality to the available alternatives. In con-
trast, little attention has been devoted to the criticality of
polymers as the number n of monomers increases. By invok-
ing the polymer-solvent and polymer-vacuum analogies, one
would expect, on the basis of Flory-Huggins �FH� theory,
that the polymer fluid should approach an asymptotic, finite
critical temperature as n−1/2, whereas the critical mass den-
sity should become vanishingly small as n−1/2, when n→�.
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In a recent contribution MacDowell et al. �23� analyzed the
scaling behavior of the critical point of chain fluids using
computer simulations and Wertheim’s theory and found that
the theory indeed reproduces FH results. The asymptotic
critical temperature was found to be in good agreement with
the � point of the polymer model as obtained from the tem-
perature dependence of the single chain conformations, again
in agreement with the FH predictions for the critical behavior
of polymer-solvent mixtures.

In this paper we address the interplay between self-
assembly and condensation, building on the pioneering work
of Sciortino and co-workers �24–26�, who investigated the
phase diagram of patchy colloids by applying Wertheim’s
theory to patchy particles with identical interaction sites. We
generalize the model by considering particles with three dis-
tinct interaction sites: two of type A and strength �AA, and
one of type B and strength �BB. Unlike sites also interact,
with strength �AB. This system is interesting as its phase be-
havior sheds light on the criticality of self-assembling fluids
of particles with more than one type of bonding site, such as
the class of systems known as hyperbranched polymers �27�.
The model is also relevant in the context of dipolar and other
associating fluids, as shown previously �28�, and generalizes
the requirements for the condensation of self-assembled flu-
ids derived by Sciortino’s group �24–26� for colloids with
identical patches. Finally, our results indicate that fluid con-
densation is intimately related to the structure of the equilib-
rium clusters at the critical point. They are therefore directly
relevant to the criticality of polymer systems and contribute
to the general effort toward elucidating the phase behavior of
self-assembled and structured fluids.

In the following we give an overview of the criticality of
patchy colloids with three distinct sites, including the limits
of identical sites �24–26� and of X- and Y-junction-driven
criticalities �28� that were published previously. The case
�ij =� �i.e., where each sphere has three identical bonding
sites� was extensively studied in �24,26� by comparing simu-
lations to Wertheim’s theory: agreement for the phase dia-
grams was excellent. Furthermore, it was established that the
number of bonding sites per particle, M, is the key parameter
controlling the location of the liquid-vapor critical point:
upon decreasing M, this moves toward ever lower densities
and temperatures such that liquid-vapor coexistence ceases
to exist if M �2 �24–26�. Simulation and theory also provide
evidence that, for mixtures of particles with two and three
identical sticky spots, the average number �M� of bonding
sites per particle can be varied continuously by changing the
concentration of the two species, and the critical point may
be made to approach zero density and temperature continu-
ously as �M�→2 �24�. This makes it possible to realize equi-
librium liquid states with arbitrarily low density �empty liq-
uids�, which would be unfeasible with spherically symmetric
interaction potentials.

If two of the three interaction strengths vanish simulta-
neously, there can be no liquid-vapor critical point. Because
Wertheim’s theory treats all bonds independently �see be-
low�, it does not provide any direct information on the struc-
ture of the resulting aggregates, but we can infer that these
are the well-known limits of noninteracting linear chains
��AA�0 and �AB=�BB=0; see Fig. 1�a�� �24,26,29�, dimers

��BB�0 and �AA=�AB=0; see Fig. 1�b�� �32�, and hyper-
branched polymers ��AB�0 and �AA=�BB=0; see Fig. 1�c��.
In the first of these one expects a polymerization transition to
occur when T→0 �30�. The detailed fashion in which the
critical temperature vanishes as the bonding energies, �AB
and �BB, decrease toward zero depends on the order in which
the limits �AB→0 and �BB→0 are taken, which in turn de-
termines the type of network that is formed. Indeed, in sys-
tems where unlike sites do not interact �i.e., where �AB=0�,
the critical point exists all the way to �BB=0. In contrast,
when �BB=0, there is no critical point below a certain finite
value of �AB /�AA. These results are rationalized in terms of
the different network structures of the two systems: two long
AA chains are linked by one BB bond �X junction, see Fig.
2�a�� in the former case and by one AB bond �Y junction, see
Fig. 2�b�� in the latter. The vapor-liquid transition is then
viewed as the condensation of these junctions, and it was
found that X junctions condense for any strength of the BB

(b)

(a)

(c)

FIG. 1. Lowest-energy structures �without loops�: �a� linear
chains ��AB=�BB=0, �AA�0� for which XA=0 and XB=1; �b�
dimers ��AA=�AB=0, �BB�0� for which XA=1 and XB=0; and �c�
hyperbranched polymers ��AA=�BB=0, �AB�0� for which XA

=0.5 and XB=0. The small circles are the interaction sites: A �filled�
and B �open�.
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attraction �i.e., for any fraction of BB bonds� whereas con-
densation of the Y junctions requires that the AB interaction
strength be above a finite threshold �i.e., there must be a
finite fraction of AB bonds� �28� in line with previous work
�31�.

We further note that, as the monomer density is increased
or the temperature decreased, these systems will pass
through a percolation threshold, where a network is formed
that spans the entire volume. Unlike condensation, this tran-
sition is purely topological and has no thermodynamic sig-
nature. The percolation transition and the correlation be-
tween the structural and thermodynamic properties of this
class of associating fluids will be addressed in future work.

This paper is organized as follows: in Sec. II we provide a
derivation of the theory and apply it to the model with three
different interaction patches. In Sec. III we present our re-
sults for the critical points, with special emphasis on the
limits of linear chains, hyperbranched polymers, and dimers,
which can be studied analytically. These are further dis-
cussed in Sec. IV, where we summarize our conclusions.

II. THEORY AND MODEL

We consider a system of N hard spheres �HSs� of diameter
� and volume vs= �� /6��3, each decorated with three bond-
ing sites �or sticky spots� on their surface. Two of these spots
are identical and labeled A, while the third is different and
labeled B. In general, two spheres may form bonds of types
AA, BB, or AB. Each bond corresponds to a short-ranged
attractive interaction between two bonding sites, which is
treated as a perturbation of the HS potential. We assume that
these potentials are square wells, with depths �ij �where i , j
=A ,B�, and their ranges are chosen so that each bonding site
can only take part in one bond. The theory does not actually
require us to specify the positions of the bonding sites over
the surface of the sphere, only that they should be arranged
in such a way that it is not possible to have more than one
bond between any two spheres. Of course, in a simulation
one would need to specify the site positions; one possible
choice is to take them as uniformly distributed as possible, as
in �26�.

The above requirements are introduced to satisfy the as-
sumptions made in Wertheim’s theory, which then provides a
general expression for the contribution of bonds to the free
energy, Fb. Wertheim’s derivation is based on a resummed
cluster expansion, where the significance of each of the ap-
proximations is mathematically well understood �15,16�. The

results are, however, rather formal and have been reformu-
lated by Jackson et al. �32� in a more convenient form that
will be used here. An analysis of Wertheim’s theory in the
fully bonded limit reveals that it approximates �i� Fb by its
low-density limit; and �ii� the n–body correlation function by
a superposition of pair �two-body� correlation functions of
the reference system �23�. This in fact amounts to a mean-
field �MF� treatment plus pair correlations, so we expect it to
predict the location of the critical point more accurately than
plain MF but not to yield the correct critical exponents. On
the basis of Sciortino et al.’s results for the model with three
identical interaction sites �24,26,29�, there will likely be
good agreement between theory and simulation. This is prob-
ably aided by the fact that the critical point occurs at sub-
stantially lower densities than in simple fluids.

For the present model, a fluid of identical spheres with
two A and one B bonding sites, the bonding free energy, Fb,
is given by �32�

�fb �
�Fb

N
= 2 ln XA + ln XB − XA −

XB

2
+

3

2
, �1�

where ��1 / �kBT�, T is the temperature, kB is the Boltzmann
constant, and Xi is the probability of having a sticky spot of
type i not bonded. 1−Xi is thus the fraction of bonding sites
of type i that do take part in bonds. The variables Xi are
related to the density and temperature through the law of
mass action that is obtained by treating bond formation as a
chemical reaction. We recall that this is equivalent to disre-
garding loops in the branched clusters, preserving only pair
correlations �33�. Clusters consist of uncorrelated bonds;
longer-range correlations, including intracluster self-
avoidance, are neglected. The intercluster excluded volume
is taken into account through the reference fluid entropic
term.

The law of mass action then yields the following two
equations �15,16,32�:

XA + 2	
AAXA
2 + 	
ABXAXB = 1, �2�

XB + 	
BBXB
2 + 2	
ABXAXB = 1, �3�

where 	��N /V�vs is the packing fraction, and,


ij =
1

vs
�

vij

gref�r��exp���ij� − 1�dr . �4�

This integral is calculated over vij, the volume of bond ij,
and gref is the pair-correlation function �PCF� of the refer-
ence system. MiMj
ij / �1+�ij� �with MA=2 and MB=1 the
numbers of A and B sites per particle and �ij the Kronecker
delta� plays the role of the equilibrium constant for the reac-
tion between sites i and j �29�.

Here we shall take all bonds to have the same volume,
vij =vb. The reference system is chosen to be the HS fluid,
and the low-density �ideal-gas� approximation for the PCF,
gref�r�=1, will be used. Within these two approximations,
Eq. �4� becomes

(b)(a)

FIG. 2. �a� An X junction; �b� a Y junction.
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ij =
vb

vs
�exp���ij� − 1� . �5�

The free energy per particle is, therefore,

�f = �fHS + �fb, �6�

which is a function of �	 ,T� only. In what follows we shall
use the Carnahan-Starling approximation for fHS �34�.

The critical point is found by equating to zero the first and
second derivatives of the pressure with respect to the density
or packing fraction,

�

�	
��pvs� = 0, �7�

�2

�	2 ��pvs� = 0. �8�

These are solved, together with Eqs. �2� and �3�, to get 	c,
Tc, XAc, and XBc; for details of the numerical procedure see
the Appendix of �28�. For consistency with Sciortino et al.’s
work, we set vb=0.000 332 285�3. Likewise we introduce
the reduced density ��= �N /V��3=	 /vs; a reduced tempera-
ture has to be defined in such a way that it will be a function
of the relevant ratio of �ij �see below�.

III. RESULTS

All interaction strengths, �AA, �AB, and �BB, can be varied
independently, thereby affording the model great flexibility.
Consequently, we choose to concentrate on the approach to
the three known limits of chains, hyperbranched polymers,
and dimers �see above� for which no liquid-vapor critical
point exists. Guided by our analytical results we investigate
what happens when each of these limits is perturbed by let-
ting each of the interaction strengths be nonzero in turn, but
smaller than the dominant one, i.e., chains when �AA
�AB
�0, �BB=0 or �AA
�BB�0, �AB=0; dimers when �BB

�AA�0, �AB=0, or �BB
�AB�0, �AA=0; and hyper-
branched polymers when �AB
�AA�0, �BB=0 or �AB
�BB
�0, �AA=0—a total of six different cases. Those for which
�AA�0 have already been addressed in an earlier paper �28�;
we include them here in the context of a systematic study of
the criticality of patchy colloids with different interaction
sites. We ask ourselves: how exactly does the critical point
vanish? For clarity we shall consider separately the cases
where the interaction between unlike sites has zero ��AB
=0� or finite ��AB�0� strength, highlighting the role of the
unlike bonding interactions.

A. Unlike sites do not interact: �AB=0

In this case 
AB=0, and the laws of mass action �Eqs. �2�
and �3��, can be solved to obtain explicit expressions for the
probabilities XA and XB,

XB =
− 1 + 	1 + 4	
BB

2	
BB
, �9�

XA =
− 1 + 	1 + 8	
AA

4	
AA
. �10�

The bonding contribution to the pressure can be derived by
combining Eq. �1� with Eqs. �9� and �10�,

�pbvs = −
	

2
�1 − XB� − 	�1 − XA� . �11�

The full pressure is then obtained by adding the HS contri-
bution �cf. Eq. �6��.

Figure 3 shows the critical density �c
�, critical temperature

Tc
�=kBT / ��AA�BB�1/2, fraction of unbonded A sites at the criti-

cal point XAc, fraction of unbonded B sites at the critical
point XBc, and the inverse mean size of aggregates 1 / �L�, as
�AA /�BB is varied. As already reported in �28�, the critical
point exists for all values of this ratio of interaction
strengths; the limits where it goes to zero or to infinity will
be addressed analytically in the next two subsections.

1. BB dimers connected by AA bonds

In the limit �BB
�AA, the system consists of BB dimers,
some of which are connected through AA bonds. This corre-
sponds to the rightmost portion of Fig. 3. To study the phase
behavior we assume full BB association, i.e., we set XB=0 in
Eq. �11� �consistently with the numerical result, see Fig.
3�c��, and obtain, for the pressure at low density,

�pvs = −
	

2
+ 	XA +

B2

2
	2 �12�

where, here and in what follows, Bi is the dimensionless i-th
virial coefficient of the HS fluid. Equations �7� and �8�, com-
bined with Eqs. �10� and �12�, can be solved analytically for
the critical point. This requires finding the roots of a third-
degree polynomial, whereupon we obtain, for the critical
packing fraction, 	c
0.0168, and for the critical tempera-
ture, 	c
AA,c
0.808 �or kBTc
�AA / ln�48.25vs /vb��, which
are close to the numerical solutions of the full equations for
the critical point: from Figs. 3�a� and 3�b�, 	c
0.0170 and
	c
AA,c
0.867. Notice that this discrepancy can only have
originated in the approximations for the HS pressure, �pHS


	+
B2

2 	2, and for the fraction of unbonded B sites, XB=0.
We conclude that when �AA /�BB→0 a liquid-vapor critical

point exists, with nonvanishing density �see Fig. 3�a�� and
vanishing temperature �see Fig. 3�b��. The numerical calcu-
lation shows that this limit for the critical density is reached
for �BB /�AA�3 �see Fig. 3�a��. Remarkably, it is also pos-
sible to verify that the bonding contribution to the pressure in
the present case �Eq. �11� with XA=0� is the same as that for
a model with four equal bonding sites �29� and half the den-
sity.

2. AA chains connected by X junctions (BB bonds)

In the limit �AA
�BB, the system consists of long AA
chains connected by some BB bonds �X junctions�. This cor-
responds to the leftmost portion of Fig. 3. We expect XA

0 �i.e., very long chains� and XB
1 �i.e., only a few X
junctions�, which is indeed borne out by the numerical cal-
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culations �see Fig. 3�c��. Expanding Eqs. �9� and �10� to the
lowest nontrivial order in 	
BB and 	
AA, respectively,
around these limits, one obtains

XB 
 1 − 	
BB + 2	2
BB
2 , �13�

XA 

1

	2	
AA

−
1

4	
AA
, �14�

which, when substituted into Eq. �11�, give the following
low-density approximation for the total pressure:

�pvs =
1

4
AA
�4		
AA

2
− 1� + �B2 − 
BB�

	2

2

+ �B3

6
+ 
BB

2 �	3. �15�

The first term in this expression corresponds to the entropy
of a gas of chains; the term −
BB	2 /2 shows that the forma-
tion of X junctions can be seen as an effective pairwise at-
traction between the particles, as pointed out in �31�; finally,

the remaining terms account for excluded volume interac-
tions, through the pressure of a HS fluid.

From Eq. �15� we derive the following relation between
the critical density and the critical temperature:

	c = 
 9

8�B3 + 6
BB,c
2 �2
AA,c

�1/5
. �16�

In order to obtain analytical expressions for the critical quan-
tities, we make the approximations 
AA,c

�vb /vs�exp��AA /kBTc� and 
BB,c=B2 �which is what we
would get for the critical temperature if the expansions in
Eqs. �13� and �14� were truncated at lower order�. The criti-
cal temperature and the critical density then become

kBTc =
�BB

ln b
, �17�

	c = 
 9vb

8vs�B3 + 6B2
2�2�1/5

exp�−
�AA ln b

5�BB
� , �18�

where b=1+B2�vs /vb�. Therefore, in the limit �BB /�AA→0,
there is always a critical point with �exponentially� vanishing
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FIG. 3. �Color online� Critical point vs �BB /�AA for �AB=0: �a� critical density �c
�; �b� reduced critical temperature Tc / ��AA�BB�1/2; �c� XAc

and XBc, the fractions of unbonded A and B sites, respectively; and �d� inverse mean size of aggregates, 1 / �L�. The reduced critical
temperature vanishes in the limits of linear chains ��BB /�AA→0� and dimers ��BB /�AA→��, albeit much more slowly in the latter case. In
parts �a� and �b�, the solid lines are the numerical solution of Eqs. �7� and �8�, the dashed lines are the asymptotic solutions, and the insets
show the behavior for small �BB /�AA; see the text for details.
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packing fraction �see Fig. 3�a�� and �linearly� vanishing tem-
perature �see Fig. 3�b��, as we had found earlier �28� �note,
however, that the numerical prefactor in Eq. �18� differs from
that in Eq. �14� of �28� because in the earlier paper XA and XB
had been expanded to lower order�. This critical point driven
by X junctions is similar to the � point of polymer solutions
in that it has �asymptotically� zero density but a finite tem-
perature �23�.

B. Unlike sites interact: �ABÅ0

If �AB�0, it is not possible to obtain from Eqs. �2� and �3�
the probabilities XA and XB as explicit functions of 	, T, and
the energy parameters. Figure 4 shows the critical density �c

�,
critical temperature Tc

�=kBT / ��AA�AB�1/2, fraction of un-
bonded A sites at the critical point XAc, fraction of unbonded
B sites at the critical point XBc, and the inverse mean size of
aggregates 1 / �L� as �AB /�AA is varied. As we shall see below,
this is the only relevant ratio of interaction strengths since
there is no critical point if �AA=0.

Asymptotic expressions for the bonding free energy can
now be derived as follows: consider the limit where �ij =0
and �kl��nm�i , j ,k , l=A ,B�. Then:

�1� start by calculating the bonding free energy when both
nondominant interaction strengths vanish, �f0,b��fb��ij
=0, �kl=0�;

�2� define a small parameter �=
kl /
nm and use it to
rewrite the laws of mass action so that Eqs. �1�–�3� define the
free energy as an implicit function of �. Notice that, in the
limit under study, ��1;

�3� expand the bonding free energy to first order in �,

�fb 
 �f0,b + �d�fb

d�
�

�=0
� , �19�

which yields an approximation for the bonding free energy
as an explicit function of 	, T, �, and �nm. This allows the
critical behavior to be studied analytically in the limits of
interest: weakly connected chains, dimers, or hyperbranched
polymers.

1. Mostly BB dimers, a few AB bonds

In the limit �AA=0 and �BB
�AB, the system consists
mostly of dimers �two particles connected by a BB bond�,
plus a small number of other aggregates in which particles
connect via AB bonds. From Eqs. �1�–�3�, we obtain the
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FIG. 4. �Color online� Critical point vs �AB /�AA for �BB=0: �a� critical density �c
�; �b� reduced critical temperature Tc / ��AA�AB�1/2; �c� XAc

and XBc, the fractions of unbonded A and B sites, respectively; and �d� inverse mean size of aggregates, 1 / �L�. The reduced critical
temperature vanishes in the limits of linear chains ��AB /�AA→0� and hyperbranched polymers ��AB /�AA→��, albeit much more slowly in the
latter case, as in Fig. 3. In parts �a� and �b�, the solid lines are the numerical solution of Eqs. �7� and �8�, the dashed lines are the asymptotic
solutions, and the insets show the behavior for small �AB /�AA; see the text for details
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bonding free energy when �AB=�AA=0 �i.e., when only
dimers can form� as an explicit function of y=1 /		
BB,

�f0,b��AB = 0, �AA = 0� = ln XB,0 −
XB,0

2
, �20�

where

XB,0 =
y2

2
�− 1 +	1 +

4

y2� . �21�

For strong BB association, i.e., in the dimer limit, y→0, Eq.
�20� becomes, to second order in y,

�f0,b 
 ln y − y +
y2

4
. �22�

Defining the small parameter �=
AB /
BB and setting �AA
=0 �or, equivalently, 
AA=0�, the laws of mass action �Eqs.
�2� and �3�� become

XA +
�XBXA

y2 = 1, �23�

XB + 2
�XBXA

y2 +
XB

2

y2 = 1, �24�

These equations define XA�y ,�� and XB�y ,�� implicitly; and,
through Eq. �1�, also the bonding free energy as a function of
y and �, �fb�y ,��. The latter is now expanded to first order
in powers of � for fixed y; whence,

� ��fb

��
�

�=0
= 1 −	1 +

4

y2 . �25�

We now consider the limit y→0. From Eqs. �21� and �24�
we conclude that we must have � /y�1 in order to recover
the dimer limit when both y and �→0. On the other hand,
���fb /����=0→−2 /y and ��2�fb /��2��=0 is dominated by a
term of order y−2. Consequently, we assume that �y−1�y,
and make the following approximation for the bonding free
energy to first order in �:

�fb = ln y − y −
2�

y
. �26�

The pressure is then

�pvs =
	

2
+ 2	 	


BB
−


AB

	
BB

	3/2 +
B2

2
	2. �27�

The first two terms represent the entropy associated with
dimer formation, the third term the effective attraction pro-
moted by dimer dissociation and AB bond formation, and the
last term the excluded volume entropy. It can be shown that
Eqs. �7� and �8� are never satisfied and condensation never
occurs in this limit. This result is corroborated by the full
numerical calculation, where it was found that a finite AA
attraction is always needed to effect condensation when
�AB��BB �28�.

2. AA chains connected by Y junctions (AB bonds)

In the limit �BB=0, �AA
�AB, leftmost portion of Fig. 4,
the system consists of chains connected by a few AB bonds
�Y junctions�. Although this was already treated in our earlier
paper �28�, we redo it here in a more systematic fashion.
Results are qualitatively the same, but some of the numerical
prefactors differ as they appear to depend sensitively on the
order of various approximations employed.

From Eqs. �1� and �3�, we obtain the bonding free energy
when �BB=�AB=0 �i.e., when only linear chains can form� as
an explicit function of y=1 /		
AA,

�f0,b��AB = 0, �BB = 0� = 2 ln XA,0 − XA,0, �28�

where

XA,0 =
y2

4
�− 1 +	1 +

8

y2� . �29�

For strong AA association, i.e., in the chain limit, y→0, Eq.
�28� becomes, to second order in y,

�f0,b 
 2 ln y − 	2y +
y2

4
. �30�

Defining the small parameter �=
AB /
AA and setting �BB
=0 �or, equivalently, 
BB=0�, the laws of mass action �Eqs.
�2� and �3�� become

XA +
�XBXA

y2 +
2XA

2

y2 = 1, �31�

XB +
2�XBXA

y2 = 1. �32�

These equations define XA�y ,�� and XB�y ,�� implicitly; and,
through Eq. �1�, also the bonding free energy as a function of
y and �, �fb�y ,��. The latter is expanded to first order in
powers of �, for fixed y; whence,

� ��fb

��
�

�=0
=

1

2
�1 −	1 +

8

y2� . �33�

We now consider the limit y→0. From Eqs. �29� and
�31�, we conclude that one must have � /y�1 in order to
recover the chain limit when both y and �→0. On the other
hand, ���fb /����=0→−	2 /y and ��2�fb /��2��=0 is domi-
nated by a term of order y−2. Consequently, we assume that
�y−1�y, and, using Eqs. �19� and �30�, make the following
approximation for the bonding free energy to first order in �:

�fb = 2 ln y − 	2y − 	2
�

y
. �34�

From this approximation, the pressure is found to be

�pvs =	 	

2
AA
−


AB

	2
AA

	3/2 +
B2

2
	2, �35�

where the different terms have fairly obvious meanings: the
first represents the entropy of chains, the second the effective
attraction promoted by Y junctions, and the third the ex-
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cluded volume interactions. The critical packing fraction and
the critical temperature can then be calculated from Eq. �35�,

kBTc =
3�AB − �AA

b
, �36�

	c =
vb

vs
exp�−

b�AB

3�AB − �AA
� , �37�

where b=2 ln�2B2vs / �3	3vb��. Note that Eqs. �36� and �37�
differ slightly from Eqs. �19� and �20� in �28� because the
former have been derived via a more consistent route, pro-
viding more accurate results �see Figs. 4�a� and 4�b��.

We conclude that a critical point exists only when �AB
��AA /3, i.e., a minimum amount of AB attraction is needed
to drive chain condensation promoted by Y-junction forma-
tion, as found in �28�. This result is almost the same as that
obtained by Zilman and Safran �31� for Y-junction-driven
criticality. In that paper, formation of a Y-junction was as-
sumed to raise the energy of a ring of bonded particles with-
out branching points by � j��0�; and formation of a chain
�creation of two ends� from such a ring was assumed to raise
the energy by 2�e��0�. It was also shown that Y junctions,
apart from increasing the energy, also increase the entropy of
the system in such a way that, if � j ��e /3, there is coexist-
ence between an end-rich gas and a junction-rich liquid. The
energy parameters of �31� are related to those of the present
model by �see Fig. 5� 2�e=�AA �since on creating two ends a
AA bond is broken� and � j =−�AB+�AA /2 �since on forming a
Y junction, one end and one AB bond are created�. Given
these relations, Zilman and Safran’s condition for the exis-
tence of a critical point translates to �AB /�AA�

1
3 , and the

condition for “repulsive” junctions becomes �AB /�AA�
1
2 .

Our result may therefore be interpreted in terms of
Y-junction formation. If �AB /�AA�

1
2 , the formation of Y

junctions lowers the energy �relative to a chain-rich liquid
phase�, so we obtain the usual liquid phase �this range of
parameters was not considered in �31��. If, on the other hand,
1
3 ��AB /�AA�

1
2 , the increase in energy is compensated by

the increase in the entropy of junction formation, and a
junction-rich liquid phase is still possible. Finally, if
�AB /�AA�

1
3 the energy cost of creating a junction is too large

and condensation becomes impossible.

3. AB hyperbranched polymers connected by BB bonds

In the limit �AA=0 and �AB
�BB, the system consists of
hyperbranched polymers connected by a few BB bonds.
From Eqs. �1�–�3�, we obtain the bonding free energy when
�AA=�BB=0 �i.e., when only hyperbranched polymers can
form� as an explicit function of y=1 /	
AB,

�f0,b��BB = 0, �AA = 0� = 2 ln XA,0 − XA,0 + ln XB,0 −
XB,0

2
,

�38�

where

XB,0 =
1

2
�− �1 + y� + 	�1 + y�2 + 4y� , �39�

XA,0 =
1

2
�1 + XB,0� . �40�

For strong AB association, i.e., in the hyperbranched polymer
limit, y→0, Eq. �38� becomes

�f0,b 
 ln y − y + y2. �41�

Defining �=
BB /
AB and setting �AA=0 �or, equivalently,

AA=0�, the laws of mass action �Eqs. �2� and �3�� become

XA +
�XBXA

y
= 1, �42�

XB +
2XBXA

y
+

�

y
XB

2 = 1. �43�

These equations define XA�y ,�� and XB�y ,�� implicitly; and,
through Eq. �1�, also the bonding free energy as a function of
y and �, �fb�y ,��. The latter is expanded to first order in
powers of �, for fixed y; whence,

� ��fb

��
�

�=0
= −

�1 + y − 	�1 + y�2 + 4y�2

8y
. �44�

Now it follows from Eqs. �39�, �40�, �42�, and �43� that one
must have �y�1 in order to recover the hyperbranched
polymer limit when both y and �→0. Therefore, if we let
�→0 and y→0 we always get the hyperbranched polymer
limit, whatever the “path” followed. So we may posit that �
is going to zero independently of y and expand the bonding
free energy, Eq. �19�, to second order in y,

(b)(a)

(c)

FIG. 5. �a� A �large� ring of particles connected by AA bonds; its
energy is E=0. �b� When the ring opens, two ends are created �or an
AA bond is broken�, so the energy becomes E=2�e=�AA. �c� When
a Y junction forms, an end is lost and an AB bond is created; the
energy becomes E=� j =−�AB+�AA /2.
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�fb 
 ln y − y + y2 + ��−
1

2
y + 2y2� . �45�

The pressure is then

�pvs = −
2�1 + 2��

	
AB
2 +

B2

2
	2 +

B3

6
	3, �46�

whose first derivative with respect to 	 is always positive.
Hence in the limit �AA=0, �BB��AB no critical point exists.

4. AB hyperbranched polymers connected by AA bonds

In the limit �BB=0 and �AB
�AA, rightmost portion of Fig.
4, the system consists of hyperbranched polymers connected
by some AA bonds. The bonding free energy �fb,0 is the
same as in the previous case �Eq. �38��. Defining the small
parameter �=
AA /
AB and setting �BB=0 �or, equivalently,

BB=0�, the laws of mass action �Eqs. �2� and �3�� become

XA +
XAXB

y
+

2�

y
XA

2 = 1, �47�

XB +
2XAXB

y
= 1, �48�

where, as before, y=1 /	
AB. These equations define
XA�y ,�� and XB�y ,�� implicitly; and, through Eq. �1�, also
�fb�y ,��. The bonding free energy is now expanded to first
order in powers of �, for fixed y, to yield Eq. �19�, with

� ��fb

��
�

�=0
= −

�1 − y − 	�1 + y�2 + 4y�2

8y
. �49�

When y→0 and �→0, we conclude from Eqs. �40� and
�47� that one must have � /y�1 in order to recover the limit
of hyperbranched polymers. On the other hand,
���fb /����=0→−1 /2y and ��2�fb /��2��=0 is dominated by a
term of order y−2. Therefore, if we assume that �y−1�y, the
expansion of the bonding free energy to first order in � is

�fb = ln y − y −
�

2y
. �50�

Calculation of the critical point within this approximation
yields yc=0 and 
AA=B2 �i.e., the � point of a fluid of AA
chains�, which disagrees with the full numerical calculation:
from Fig. 4�a�, 	c only approaches zero asymptotically as
�AB /�AA→�. We therefore expand the bonding free energy
to second order in �, with the result

�fb = ln y − y + y2 −
�

2y
+

1

2
��

y
�2

. �51�

The pressure now becomes, at low densities,

�pvs =
1


AB
�1 −

2

	
AB
� + �B2 − 
AA�

	2

2
+ �B3 + 6
AA

2 �
	3

6
,

�52�

and the following relation holds between the critical density
and the critical temperature:

	c = � 12

B3 + 6
AA,c
2 �1/4 1


AB,c
1/2 . �53�

To obtain an analytical estimate for the critical point, we take

ABc
�vb /vs�exp��AA /�AB� and 
AA,c=B2 to get the critical
temperature. Combining these with Eq. �53� yields the criti-
cal density. The final results are

kBTc =
�AA

ln b
, �54�

	c = 
 12vs
2

vb
2�B3 + 6B2

2��1/4

exp�−
�AB ln b

2�AA
� , �55�

where b=1+B2�vs /vb�.

C. Mean cluster size and the percolation threshold

The shapes of the self-assembled clusters of patchy col-
loids with two A and one B sites may be identified easily
when one of the interaction strengths vanishes and another
dominates. This allowed us to carry out a detailed analysis of
the criticality of fluids of BB dimers, interacting through AA
or AB bonds; of AA chains, interacting through BB or AB
bonds; and of AB hyperbranched polymers, interacting
through AA or BB bonds. In particular, the way in which the
critical point vanishes was investigated both analytically and
numerically and the asymptotic expansions were shown to be
very accurate over wide ranges of the interaction parameters.
We proceed to show that, at the MF level, it is straightfor-
ward to calculate the mean equilibrium cluster size and to
locate the percolation threshold, for which the size of these
clusters diverges. Although we will return to a general dis-
cussion of the percolation threshold in future work, we give
here an introductory discussion of the mean cluster size and
the corresponding MF percolation threshold of patchy col-
loids with dissimilar sites. This is framed within Wertheim’s
theory of associating fluids. The calculation is exceedingly
simple, and complements the analysis of the thermodynam-
ics with a simple but complete description of the fluid struc-
ture.

Let us assume that the equilibrium clusters all have the
same size and no loops, which is equivalent to neglecting
any fluctuations �MF approximation�. Under these conditions
all clusters have a size equal to the mean cluster size, which
is determined by the probabilities XA and XB that sites A and
B are not bonded, which in turn are given by the laws of
mass action �Eqs. �2� and �3�� for a given thermodynamic
state. In the following we outline the calculation of the mean
cluster size for a system of chains with Y junctions, i.e., a
system where �BB=0 and �AB��AA.

Let us consider long AA chains connected by Y junctions
�AB bonds�. At the MF level, clusters comprise ns linear
strands, each of which contains � particles. The mean cluster
size is then given by the number of particles in one cluster,
�L�=ns�. Clearly, the number of A sites in the cluster is 2�L�,
the number of B sites is �L�, the number of bonded B sites is
ns−1 and the number of unbonded A sites is ns+1 �see Fig.
6�. The equilibrium probabilities that A and B sites are un-
bonded become
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XA =
ns + 1

2�L�
, �56�

XB = 1 −
ns − 1

�L�
. �57�

Eliminating ns, we obtain the mean cluster size in terms of
XA and XB,

�L� =
2

2XA + XB − 1
. �58�

This equation gives the mean cluster size, in the limit �BB
=0 and �AB��AA. Analogous derivations follow for the mean
cluster sizes in the other limits. The structure of the clusters
depends on the limit considered and so do the relations be-
tween the probabilities XA and XB and the structural param-
eters. However, the dependence of the mean cluster size �L�
on XA and XB is universal and given by Eq. �58�. In fact, this
equation may be derived simply by assuming that the equi-
librium clusters have no loops and that the number of bonded
sites per monomer is equal to its average �MF approxima-
tion�: �k�=2�1−XA�+ �1−XB�. The no-loop condition implies
that when one bond is formed the number of clusters Ncl
decreases by one; Ncl is then related to the number of mono-
mers N and the number of bonds Nb through Ncl=N−Nb. The
average number of bonds per monomer is Nb /N= �k� /2, and
thus the mean cluster size becomes

�L� �
N

Ncl
=

1

1 −
�k�
2

=
2

2XA + XB − 1
. �59�

Within MF the mean cluster size diverges at the percolation
threshold �35� and the previous expressions for the mean
cluster size apply only below this threshold, which occurs at
2XA+XB=1. Figures 3�d� and 4�d� show 1 / �L� at the critical
point vs �BB /�AA and �AB /�AA. In both cases �L� has a mini-
mum for �BB /�AA�1 or �AB /�AA�1, which corresponds to
nearly isotropic interactions and therefore the smallest clus-
ters �as all sites are bonded with equal probabilities�. The
cluster size diverges in the limits of AA chains with X junc-
tions �Fig. 3�d�, left-hand side�, AA chains with Y junctions
�Fig. 4�d�, left-hand side�, and hyperbranched polymers �Fig.
4�d�, right-hand side�. In contrast, in the dimers limit �Fig.
3�d�, right-hand side�, aggregates saturate at a finite mean
size. This is consistent with the critical density going to zero

in the former three limits, but to a finite value in the latter.
A very similar result for the percolation threshold was

obtained by Zilman and Safran �31� in a MF analysis of a
model of self-assembled networks, based on the explicit cal-
culation of the transverse spin correlations of a zero-
component Heisenberg model with a particular three-spin
term. The transverse correlation function measures the corre-
lations between chain ends in the same cluster, and the MF
correlation length �a measure of the average cluster size� for
a system of chains with Y junctions was found to diverge at
the percolation threshold, when the density of ends is three
times that of the junctions, or

	 exp�− �� j − �e�/T� = const, �60�

where � j and �e are the energies of junctions and ends, re-
spectively �31�.

In our model of chains with Y junctions, XA and XB are
given by

XA 

1

�2
AA	�1/2 , �61�

XB 
 1 −
2
AB

�2
AA�1/2	1/2, �62�

leading to, for the MF percolation threshold,

	
AB = 1. �63�

Recalling that 
AB
exp��AB /T� and �AB=−�� j −�e�, we find
that, apart from the numerical prefactor, this is the same as
the percolation threshold obtained by Zilman and Safran �Eq.
�60��. It is also easy to check that in our model the critical
density �Eq. �37�� and the critical temperature �Eq. �36�� of
the fluid of chains with Y junctions are related through

AB,c	c=1, implying that, in the limit of very low critical
densities, the percolation line intersects the phase diagram at
the critical point. We note that this differs from the result of
Zilman and Safran �31�, who found that the percolation tran-
sition always occurs at a density lower than �c �the prefactor
in Eq. �60� is smaller than that in Eq. �63��. As noted by
Zilman and Safran, the numerical prefactors depend rather
sensitively on the details of the models and approximations,
and we expect that the behavior reported above will become
a zero-density limit within a higher-order approximation.

At the present level of approximation, we conclude that
the difference between our result and that of Zilman and
Safran is related to the consistency �or lack thereof� of the
expansions for the thermodynamics and structural properties
of the models. We note that our expansions for the thermo-
dynamics are consistent and that the same model was used to
calculate both thermodynamic and structural properties. Fi-
nally, we stress that our derivation is much simpler �lines
rather than pages� and more transparent, yielding the correct
zero-density behavior that appears to be lacking in Zilman
and Safran’s analysis.

IV. CONCLUSIONS

We have applied Wertheim’s theory to patchy colloids
with three sites: two of type A, with interaction strength �AA,

(b)(a)

FIG. 6. �a� A cluster composed of two linear strands �ns=2�,
each of size �=7; the number of unbonded A sites �labeled Ā� is
ns+1=3, and the number of bonded B sites �labeled B� is ns−1
=1. �b� When a third linear strand is added, one new bonded B site
and one new unbonded A site are created.
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and one of type B and strength �BB. Unlike sites also interact, with strength �AB. Our results are summarized below,

�AB = 0��BB 
 �AA:dimers connected by AA bonds

�AA 
 �BB:chains connected by BB bonds�X junctions� � ,

�AB � 0��AA = 0 ��AB 
 �BB:no critical point

�BB 
 �AB:no critical point
�

�Bb = 0 ��AB 
 �AA:hyperbranched polymers connected by AA bonds

�AA 
 �AB:chains connected by AB bonds�Y junctions� � � .

When the unlike �AB� interactions vanish there are two types
of criticality: dimer criticality driven by the AA attraction,
with critical parameters related to those of a system of patchy
colloids with four identical sites; and chain criticality, driven
by BB attractions �X junctions�. In the latter case the critical
parameters are those of a � point, at which interchain attrac-
tions and repulsions balance, and tend to zero as the BB
attraction vanishes. When the unlike interactions are finite,
we find that condensation requires a finite strength of the AA
attraction, leading to: �i� hyperbranched polymer criticality,
driven by the AA attraction. The critical parameters are those
of a � point, where attraction and repulsion between the
hyperbranched chains balance, and which tend to zero as the
AA attraction vanishes. �ii� chain criticality, driven by AB
attractions �Y junctions�. In the latter case a finite amount of
AB attraction is required for condensation to occur.

In summary, we distinguish three types of condensation,
based on the structure of the underlying networks: linear
chains �AA clusters connected by BB or AB bonds�; hyper-
branched polymers �AB clusters connected by AA bonds�; or
dimers �BB clusters connected by AA bonds�. In the first two
cases the size of aggregates goes to infinity as the limit of
infinite chains or hyperbranched polymers is approached,
yielding a vanishing critical density, whereas in the third case
the aggregates remain finite, with a finite critical density that

is related to that of a system with four identical patches.
Furthermore, it is interesting to note that there can be no
critical point in the absence of AA attraction, although such
attraction by itself cannot drive condensation.

Finally, at the MF level, we find that the mean cluster size
is a universal function of XA and XB, the fractions of un-
bonded A and B sites, and thus independent of cluster struc-
ture. From this we have derived the percolation line and
concluded that, for AA chains with Y junctions, it always
intersects the binodal line at the critical point in the limit of
vanishing critical density. This is similar, but not identical, to
Zilman and Safran’s finding �31� for a lattice model of asso-
ciation. It should, however, be noted that the numerical pref-
actors in the asymptotic expressions depend sensitively on
the model�s� and the level�s� of the approximations so that
our result must be viewed as the zero-density limit, rather
than a universal feature, of the model of patchy colloids in-
vestigated in this paper.
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